10 research outputs found

    Self-sufficiency of an autonomous self-reconfigurable modular robotic organism

    Get PDF
    In recent years, getting inspiration from simple but complex biological organisms, several advances have been seen in autonomous systems to mimic different behaviors that emerge from the interactions of a large group of simple individuals with each other and with the environment. Among several open issues a significantly important issue, not addressed so far, is the self-sufficiency, or in other words, the energetic autonomy of a modular robotic organism. This feature plays a pivotal role in maintaining a robotic organism\u27s autonomy for a longer period of time. To address the challenges of self-sufficiency, a novel dynamic power management system (PMS) with fault tolerant energy sharing is proposed, realized in the form of hardware and software, and tested. The innate fault tolerant feature of the proposed PMS ensures power sharing in an organism despite docked faulty robotic modules. Due to the unavailability of sufficient number of real robotic modules a simulation framework called Replicator Power Flow Simulator is devised for the implementation of application software layer power management components. The simulation framework was especially devised because at the time of writing this work no simulation tool was available that could be used to perform power sharing and fault tolerance experiments at an organism level. The simulation experiments showed that the proposed application software layer dynamic power sharing policies in combination with the distributed fault tolerance feature in addition to self-sufficiency are expected to enhance the robustness and stability of a real modular robotic organism under varying conditions.Inspiriert von einfachen aber komplexen biologischen Organismen wurden in den letzten Jahren verschiedenste autonome Systeme entwickelt, welche die Verhaltensweisen einer großen Gruppe einfacher Individuen nachahmen. Das zentrale und bis heute ungelöste Problem dieser Organismen ist deren autonome Energieversorgung. Zur Sicherstellung der Energieversorgung eines aus mehreren Robotern zusammengesetzten Organismus wurde in dieser Arbeit ein neuartiges Power-Management-System (PMS) konzipiert, aufgebaut und an einzelnen Robotermodulen und einem Roboterorganismus getestet. Die Hardware eines bestehenden Roboters wurde um ein neues Konzept erweitert, das auch bei fehlerhaften Robotermodulen einen Energieaustausch sicherstellt und so zu einer erhöhten Robustheit des PMS führen soll. Das entwickelte PMS wurde in modulare Roboter integriert und beispielhaft anhand eines Roboterorganismus getestet. In Ermangelung einer ausreichenden Anzahl von Robotermodulen wurde eine Simulationsumgebung entwickelt und die Software des PMS im Simulationsprogramm, anstatt im Roboter, implementiert. Dieses Simulationswerkzeug ist momentan das Einzige, das unter Berücksichtigung des Bewegungsmodells des Organismus den Energietransport im Roboterorganismus visuell darstellt und das Verhalten in verschiedenen Fehlerfällen simulieren kann. Die Simulationen und Messungen zeigen, dass das entwickelte PMS geeignet ist, die Energieversorgung von Roboterorganismen auch in Fehlerfällen sicherzustellen und so die Stabilität und Robustheit zu erhöhen

    Initiating haemodialysis twice-weekly as part of an incremental programme may protect residual kidney function

    Get PDF
    © The Author(s) 2018. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.Background: Initiating twice-weekly haemodialysis (2×HD) in patients who retain significant residual kidney function (RKF) may have benefits. We aimed to determine differences between patients initiated on twice- and thrice-weekly regimes, with respect to loss of kidney function, survival and other safety parameters. Methods: We conducted a single-centre retrospective study of patients initiating dialysis with a residual urea clearance (KRU) of ≥3 mL/min, over a 20-year period. Patients who had 2×HD for ≥3 months during the 12 months following initiation of 2×HD were identified for comparison with those dialysed thrice-weekly (3×HD). Results: The 2×HD group consisted of 154 patients, and the 3×HD group 411 patients. The 2×HD patients were younger (59 ± 15 versus 62 ± 15 years: P = 0.014) and weighed less (70 ± 16 versus 80 ± 18 kg: P < 0.001). More were females (34% versus 27%: P = 0.004). Fewer had diabetes (25% versus 34%: P = 0.04) and peripheral vascular disease (PVD) (13% versus 23%: P = 0.008). Baseline KRU was similar in both groups (5.3 ± 2.4 for 2 × HD versus 5.1 ± 2.8 mL/min for 3 × HD: P = 0.507). In a mixed effects model correcting for between-group differences in comorbidities and demographics, 3×HD was associated with increased rate of loss of KRU and separation of KRU. In separate mixed effects models, group (2×HD versus 3×HD) was not associated with differences in serum potassium or phosphate, and the groups did not differ with respect to total standard Kt/V. Survival, adjusted for age, gender, weight, baseline KRU and comorbidity (prevalence of diabetes, cardiac disease, PVD and malignancy) was greater in the 2×HD group (hazard ratio 0.755: P = 0.044). In sub-analyses, the survival benefit was confined to women, and those of less than median bodyweight. Conclusion: 2×HD initiation as part of an incremental programme with regular monthly monitoring of KRU was safe and associated with a reduced rate of loss of RKF early after dialysis initiation and improved survival. Randomized controlled trials of this approach are indicated.Peer reviewedFinal Accepted Versio

    Multi-Robot Organisms: State of the Art

    Get PDF
    This paper represents the state of the art development on the field of artificial multi-robot organisms. It briefly considers mechatronic development, sensor and computational equipment, software framework and introduces one of the Grand Challenges for swarm and reconfigurable robotics

    Self-sufficiency of an autonomous reconfigurable modular robotic organism

    No full text
    This book describes how the principle of self-sufficiency can be applied to a reconfigurable modular robotic organism. It shows the design considerations for a novel REPLICATOR robotic platform, both hardware and software, featuring the behavioral characteristics of social insect colonies. Following a comprehensive overview of some of the bio-inspired techniques already available, and of the state-of-the-art in re-configurable modular robotic systems, the book presents a novel power management system with fault-tolerant energy sharing, as well as its implementation in the REPLICATOR robotic modules. In addition, the book discusses, for the first time, the concept of “artificial energy homeostasis” in the context of a modular robotic organism, and shows its verification on a custom-designed simulation framework in different dynamic power distribution and fault tolerance scenarios. This book offers an ideal reference guide for both hardware engineers and software developers involved in the design and implementation of autonomous robotic systems

    Towards Energy Homeostasis in an Autonomous Self-Reconfigurable Modular Robotic Organism

    No full text
    Abstract—This paper presents a novel approach to artificial energy homeostasis in self-reconfigurable modular robots. Using self-monitoring and self-sufficiency principles, energy harvesting in a system of distributed energy sources is proposed. In conjunction with this, we propose an artificial immune system that incorporates on-board power management system for adaptive real time detection of errors which acts as an indicator to a robot to harvest energy from other robots within the local vicinity. Early experiments show that the Artificial Immune System affords a high level of error detection within the power module and will prove to be beneficial in maintaining overall performance of a robotic unit for long periods of time. Keywords-Self-monitoring; energy homeostasis; selfreconfigurable modular robots; AIS; artificial immune system I

    Emerging Treatment Options for Geographic Atrophy (GA) Secondary to Age-Related Macular Degeneration.

    No full text
    Age-related macular degeneration (AMD) is characterized as a chronic, multifactorial disease and is the leading cause of irreversible blindness. Advanced AMD is classified as neovascular (wet) AMD and non-neovascular (dry) AMD. Dry AMD can progress to a more advanced form that manifests as geographic atrophy (GA), which significantly threatens vision, leading to progressive and irreversible loss of visual function. There are currently no approved therapeutics commercially available for GA patients. However, data from various clinical trials have demonstrated favorable results with significant reduction in GA lesion growth. This review furthers the understanding of the pathophysiology of GA, as well as current clinical trial data on investigational therapeutics
    corecore